

Recovery in Multiversion Objectbase Systems

Blanca H. Perez
Department of Computer Science

California State University, San Marcos
San Marcos, CA, U. S. A

Dr. Ahmad Reza Hadaegh
Department of Computer Science

California State University San Marcos
San Marcos, CA, U. S. A

Abstract
Objectbases are becoming more popular

because they reflect the real world more
accurately and realistically than Relational
Databases. Multiversioning of object-oriented
systems uses previous versions of the objects in
order to enhance the performance of the
transaction management. An optimistic
algorithm to manage concurrent execution of the
transactions in a centralized multiversion
objectbase environment is presented by Hadaegh
and Barker [3]. In that model each transaction
obtains a copy (version) of all objects it needs to
execute. If it is decided that a transaction can be
committed, the associated versions become
persistent objects and the transaction commits.
We propose a recovery algorithm for the
Hadaegh and Barker model.

Keywords: Recovery, Concurrency Control,
Objectbase Systems, Nested Transaction

1. Introduction

Two main aspects of the transaction
management are concurrency control and
recovery. Concurrency control ensures that
individual users see consistent states of the
database even though operations on behalf of
many users may be interleaved by the database
management system; i.e., to the external world,
the database appears as if the transactions were
executed one at a time in some order. Recovery
ensures that the database is fault tolerant; i.e., the
data are not corrupted even in failure. A
concurrency control algorithm guarantees
serialization of a set of concurrently executing
transactions based on some correctness criterion.
A set of transactions is serializable if their
execution history is equivalent to a serial
execution of those transactions. The most
common correctness criterion is conflict
serializability [1]. This paper uses the concept of
value-serializability created by Hadaegh and
Barker [3].

Concurrency control is divided into two
broad categories: optimistic and pessimistic.
Pessimistic protocols block the transactions by
deferring the executions of some conflicting
operations. Optimistic algorithms do not block
the transactions but validate their correctness at
commit time.

A reliable DBSM must be equipped with a
recovery algorithm. The recovery algorithm must
ensure that the database is brought into a
consistent state after a failure occurs. Failures
can be divided into three categories: Transaction
Failure, System Failure, and Media Failure. A
transaction failure is detected by the application,
e.g., encountering division by zero. A system
failure (crash) occurs when the system fails in a
way that causes the loss of volatile memory
contents. An example of system failure is power
failure. Media failure occurs from the breakdown
of persistent storage and potentially causes the
loss of data on non-volatile storage. If the failure
occurs, the recovery algorithm is executed to
bring back the system into a consistent state.

 Recently research has moved toward object-
oriented databases with nested transactions. An
objectbase consists of a set of objects that
contain structure and behavior. The structure is
the set of attributes encapsulated by the object.
An object’s behavior is defined by a set of
procedures called methods. A method’s
operations can read or write an attribute, or
invoke another method.

In the nested transaction model [7], a
transaction contains any number of
subtransactions, and each subtransaction again
may compromise any number of subtransactions.
This paper adapts the nested transaction model
used in Hadaegh and Barker’s model [3]. They
introduce two types of transactions: user
transactions and version transactions. A user
transaction is a sequence of method invocations
on a set of objects. A version transaction
contains read/write operations on a version of an
object and any nested method invocations.

Hadaegh and Barker developed the
concurrency control algorithm in their

multiversion objectbase system. The goal of our
research is to enhance their model with a
recovery algorithm.

This paper makes the following
contributions:
• It enhances the Hadaegh and Barker’s

architecture. We add the Recovery Manager
components to the architecture to recover
the system in case a transaction or a system
failure occurs.

• We propose a recovery algorithm that
reflects the expanded and enhanced
architecture. The algorithm shows how the
version objects are used to minimize the
overhead during normal transaction
processing and to minimize the time
required to do the recovery.

This paper is organized as follows: In

Section 2, we describe the related work. In
section 3, we briefly explain the version model,
and the transaction model. Then we show the
extended architecture that incorporates the
Recovery Manager in Section 4. In Section 5, we
introduce the recovery algorithm. Finally, we
conclude this paper with some closing thoughts
and address related open problems.

2. Related Work

In this section, we briefly review relevant
multiversion, objectbase concurrency control,
and recovery literature. Multiversioning allows
for enhanced concurrency, simplifies
recoverability, and supports temporal data
management. Some of the related work that
directly lead to our work are Graham and Barker
[2], Hadaegh and Barker [3,4,5], and Wieler and
Barker [8].

Graham and Barker [2] proposed an
optimistic concurrency control scheme for
objectbase systems. In their algorithm, each
transaction obtains copies of the objects it
requires and is executed independently of other
transactions.

Hadaegh and Barker [3,4,5] illustrated an
optimistic concurrency control for multiversion
objectbase systems. They used closed nested
transactions where updates of uncommitted
transactions are never present in the objectbase at
commit time. They presented a serializability
theory called value-serializability and an
architecture that could be used as the basics for
the development of optimistic concurrency
control protocols on a centralized objectbase
environment.

Wieler and Barker created a method and
object scheduler algorithms that satisfy the
operation ordering criteria of reliability
definitions. To support the reliable schedulers, a
novel logging scheme is introduced where each
object maintains its own logical log. An object’s
logical log contains log records for each action
of the object transactions executing on the
object. An object’s updates log records, grouped
together in a logical log, promote efficient
recovery from transaction aborts and system
failures.

Nakajima [6] introduces a recovery protocol
with multiversion objects using branching
multiversion objects instead of undo operations.
Nakajima introduces an alternative structure for
the versions of the objects called branched
multiversion object. The execution of branched
multiversion objects is structured in the trees of
versions and may create several versions during
one execution of methods. For recovery,
specifically, for transaction aborts, compensating
methods are proposed to undo the effects of their
corresponding methods. The recovery algorithm
search the version created by an aborted action,
and select successor of this versions. If this
version is the current version, discard the version
and its successors, and the version before the
current version becomes the current version.

3. The Model

This section defines objects, versions, and
transactions.

3.1 Object and Version Model

In Hadaegh and Barker’s model [3], an
objectbase consists of a set of objects. An object
has a set of attributes that determine the state of
the object and a set of methods that can change
the behavior of the object. One or more versions
(copies) of a particular object may exist at a
particular time.

committed versions active versions

Figure 1

active

committed

The versions of the objects are either
committed or active. Figure 1 shows the
structure of the committed versions and the
active versions. Committed versions are
maintained in a data link structure called the
version-chain of the object. They are in
chronological order depending on some
correctness criteria. The most recent committed
version of the object is on the head of the chain
and is called the last committed version (LCV).
An active version of the object is made (copied)
from the latest committed version of the object
and is manipulated independently of all other
versions. The active versions can be committed
after the correctness specification for
concurrency control is applied to determine if
and where in the version-chain the active version
can be inserted.

An object is an ordered triple, o=<f,A,M>,
where f is a unique object identifier; A is the
object's structure, composed of attributes; and M
is the object's behavior, composed of methods.
An object with identifier f is denoted of. Objects
are versionable in that several versions can be
derived from a given object. Versions are either
active or committed. An active version i of an
object of (denoted vfi) begins as a copy of the
object which can then be manipulated
independently of all other such versions. The
modified active version is promoted to a
committed version if its state is consistent with
other committed versions in object family f;
otherwise, the active version is modified again,
and if it still cannot be promoted to a committed
object, it is disposed. A new committed version
is inserted in an appropriate position in the
version-chain, which is specified by the
correctness criteria. Periodically, the older
committed versions are removed from the
version-chain and archived due to the limitation
of the size of the version-chain. The version-
chain of an object effectively captures the
evolution of the objects (historical information
through time).

3.2 Transaction Model

The transactions are submitted to the
objectbase by multiple, concurrent users. A
transaction submitted by a user consists of a set
of method invocations. Methods can invoke
other methods. The nested methods invoked by
the users are executed concurrently. The nested
transactions submitted by the users may be
divided into two groups. The first group includes
top-level transactions explicitly created by the
users. They are called user transactions. The

second group contains transactions generated
from the method invocations made by the top-
level transactions. They are called version
transactions.

The operations of a user transaction are
method invocations that are transformed by the
system into version transactions. Version
transactions manipulate the active versions of the
relevant object.

4. The Architecture

This section explains the architecture
developed by Hadaegh and Barker [3]. It also
illustrates our recovery management extension
that brings reliability to the system.

Figure 2 shows three original main

components of the architecture: the Transaction
Processor, the Version Processor, and the
Validation Processor. The Transaction Processor
contains two components: the User Transaction
Manager and the Method Scheduler. The User
Transaction Manager coordinates the execution
of user transactions (UTi) by converting the
method invocations of UTi to version
transactions and passes them to the Method
Scheduler. The Method Scheduler permits
concurrent execution of a version transaction of
UTi based on the information obtained from
static analysis [2] so that version transactions of
UTi invoked on the same active version are
ordered, enforcing intra-UT concurrency control.
Next, the Method Scheduler sends the version
transactions and their schedule to the Version
Processor.

The Version Processor also consists of two
components: the Version Transaction Manager
and the Execution Manager. For each version
transaction of the user transaction UTi executing
on object f, the Version Transaction Manager
obtains a copy of the last committed version of
the object family f in the objectbase and puts it in
the Unstable Store. This copy is the active
version vfi. Next, it passes the versions
transactions to the Execution Manager. The
Version Transaction Manager builds a version
list for all versions of objects associated with
UTi; this list is denoted by VRLST1 (UTi). It also
builds a version list for the last committed
version of the objects associated with UTi;
denoted by VRLST2(UTi). When all version
transactions of UTi are completed, the Version
Transaction Manager sends VRLST1(UTi) to the
Execution Manager. The Execution Manager
executes the operations of the version

transactions against the active versions in the
Unstable Store. When the Execution Manager
obtains VRLST1(UTi) from the Version
Transaction Manager, it passes VRLST1(UTi) to
the Validation Processor.
The two main components of the Validation
Processor are the Decision Manager and the
Commit Manager. For each f in the
VRLST1(UTi), the Decision Manager compares
the updated active version vfi with the last
committed version of object family f (ofn), and
determines if an updated active version would
create inconsistency in the objectbase. The state
of an updated active version vfi is consistent with
the states of committed versions in the object
family f if the values of the attributes read by UTi
in vfi have not been modified in the objectbase
during the lifetime of UTi. If the states of all
active versions are consistent with the states of
their corresponding committed versions in the
objectbase, VRLST1 (UTi) is sent to the Commit
Manager; otherwise, some active versions are
invalid and UTi should be aborted or reconciled.

If it is decided that UTi is to be committed,
the Commit Manager promotes the revised
versions to committed versions and merges the
committed versions with their corresponding
objects in the objectbase, thereby creating new
states for the objects in objectbase. Next, the
Commit Manager sends a commit message to the
Decision Manager. The commit message is
eventually passed to the user by the User
Transaction Manager.

As shown in the architecture, we have added
a new component called the Recovery Processor
to take care of the recovery issues in case the
system fails. The two components of the
Recovery Processor are the Status Manager and
the Garbage Collector. During the execution of
UTi, the other three processors, explained above,
report the status of the transaction to the Status
Manager. Every time the Status Manager
receives a new status for UTi, it records it in the
log. The Status Manager keeps separate records
for each transaction in the log. Each record of the
log contains four fields.

 UTi VRLST1(UTi) VRLST2(UTi) Status of UTi

Figure 2

The first field is reserved for identification of the
transaction. The second field is used to store the
identification of the active versions that are being
processed by the transaction. The third field is
used to record the identification of the base
(original) versions of the active versions
processed by the transaction. Finally the last
field refers to the current status of the
transaction.

The Garbage Collector cleans up the log and
the Unstable Store by removing any information
recorded for committed or aborted transactions.
The next section explains the Recovery
Processor in detail.

5. The Recovery Management
5.1 Main Operation

The Status Manager contains five major
methods: Begin(UTi), ReadyToValidate(UTi),
ReadyToCommit(UTi), Abort(UTi), and
Commit(UTi).

Begin(UTi): This marks the beginning of the user
transaction UTi. The User Transaction Manager
invokes this method. When the Status Manager
obtains the Begin message, it creates a record in
the log for UTi with Begin status.

ReadyToValidate(UTi): This marks the pre-
commit of all version transactions of the user
transaction UTi. The Version Transaction
Manager invokes this method after all version
transactions of user transaction UTi are pre-
committed. In this method, the Version
Transaction Manager passes the VRLST1 (UTi),
and the VRLST2 (UTi) to the Status Manager.
When the Status Manager receives the
ReadyToValidate message, it adds the two
version lists to the UTi record in the log and
changes the status of UTi to ReadyToValidate.

ReadyToCommit(UTi): This denotes that the user
transaction UTi has successfully passed the
validation status and is ready to commit. The
Decision Manager invokes this method after it
determines that the updated active versions will
not create inconsistency in the objectbase if they
become persistent objects. When the Status
Manager receives the ReadyToCommit message,

it changes the status of the transaction to
ReadyToCommit in the log record for UTi.

Abort(UTi): This denotes the unsuccessful
completion of the user transaction UTi. UTi
aborts if either it terminates abnormally during
the execution (transaction failure) or it fails to
pass the Validation test done by the Decision
Manager. In the former case, the Execution
Manager sends the Abort message to the Status
Manager. In the latter case, the Decision
Manager notifies the Status Manager about the
abortion of UTi. When the Status Manager
receives an Abort message, it changes the status
of the transaction to Abort in the log for UTi.

Commit(UTi): This marks the successful
completion of the user transaction UTi. The
Commit Manager calls this method after all
active versions have been successfully promoted
to the top of the version-chain of the objects that
have been used by UTi. The Commit Manager
sends a Commit message to the Status Manager.
When the Status Manager receives the Commit
message, it changes the status of the transaction
to Commit in the log record of UTi.

During normal transaction processing, the Status
Manager only records in the log the status of the
transaction and the version list. All operations
make by the transactions are done against the
active versions. So the versions of the objects
minimize the overhead of the log during normal
transaction processing.

5.2 Recovery Algorithm

If a system crash occurs, the recovery is
done as follows: The Status Manager performs
an analysis on the log, line by line to find out the
status of the transactions. If the status of the
transaction is Begin, it changes the status to
Abort, because the transaction was not completed
before the crash occurred. If the status of the
transaction is ReadyToValidate, it restores the
VRLST1 (UTi) and VRLST2 (UTi) from the
transaction record and sends these lists to the
Decision Manager. If the status of the transaction
is ReadyToCommit, it restores the VRLST1 (UTi)
from the transaction record and sends this list to

UTi VRLST1(UTi) VRLST2(UTi) ReadyToCommit

UTi VRLST1(UTi) VRLST2(UTi) ReadyToValidate

UTi ? ? Begin

UTi VRLST1(UTi) VRLST2(UTi) Abort

UTi VRLST1(UTi) VRLST2(UTi) Commit

the Commit Manager. Any record with Commit
or Abort status remains unchanged.

 The recovery algorithm minimizes the time
required to do the recovery because of the
lacking of undoing or redoing processing and the
presence of the active version in Unstable Store.

This algorithm differs from traditional
multi-version recovery algorithm in that the
recovery is accomplished base on the current
status of the transaction recorded in the log.

5.3 System Clean-up

Periodically, the Status Manager invokes the
Garbage Collector to clean up the log. The
Garbage Collector sequentially goes through the
log and removes the records that refer to aborted
or committed transactions. In addition, for every
record of a transaction such as UTi that is
removed from the log, the Garbage Collector
removes all the active versions associated with
UTi from the Unstable Store. The Status
Manager invokes the Garbage Collector during
the idle periods, because clean-up of the
Unstable Store and the log can be a particularly
time-consuming task that slows down the
system.

The recovery algorithm is idempotent. If the
system crashes again during restart, the recovery
algorithm performs exactly the same steps as it
did during the previous restart. Further, our
Recovery Processor enables fast crash recovery
while incurring low overhead during normal
transaction processing. In the recovery
algorithm, the recovery time is very fast since the
active versions and the version-chain are
available in the Unstable Store and objectbase
respectively. This method avoids writing undo
and redo log records. This significantly reduces
the storage overhead for the log compared with
other log-based schemes normally used in
traditional databases.

6. Conclusions and Future Work

This paper presented the recovery algorithm
based on the assumption that the transaction
aborts in case of conflict. One area for immediate

future works is implementing recovery using
simple and complex reconciliation to re-execute
the transaction instead of abort it. We can also
extend this work to investigate concurrency
control and recovery using both pessimistic and
optimistic techniques in distributed objectbase
systems.

7. References
[1] Bernstein, P.A., Hadzilacos, V., Goodman,
N. “Concurrency Control and Recovery in
Database Systems”, Addison-Wesley Pub. Co.,
1987.
[2] Graham, P., and Baker, K. “Effective
Optimistic Concurrency Control in Multiversion
Object Bases”. In Proceedings of International
Symposium on Object Oriented Methodologies
and Systems (ISOOMS), volume 858, pp 313-
328. In Springer-Verlag. Lecture Notes in
Computer Science, September 1994.
[3] Hadaegh, A. and Barker, K. “Version
Manager in Object Based System, Advances in
Data Base and Information System”, pp 126-
133, Moscow, September 1996.
[4] Hadaegh, A. and Barker, K. “Simple
Reconciliation of Transactions to Increase
Concurrency in Historical Object-base”, XII
Brazilian Symposium on Database Systems –
SBBD’97, pp 44-64, October 1997.
[5] Hadaegh, A. and Barker, K. Partial Re-
execution. “Reconciling Transactions to increase
Concurrency in Object-bases”, International
Conference on Parallel and Distributed
Processing Techniques and Applications
(PDPTA’99), Monte Carlos Resort, Las Vegas,
Nevada, USA. 1999.
[6] Nakajima, T. Recovery Management in
Multiversion Objects. JAIST Research IS-RR-
16S, 1994.
[7] Moss B. “Nested Transactions – An
Approach to Reliable Distributed Computing”,
The MIT Press, 1985.
[8] Wieler, C.A., and Barker, K. “Reliable and
Recoverable Transactions in Object-Based
Systems”. Master Thesis, Manitoba, Canada,
1995.

