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Abstract 
Objectbases are becoming more popular 

because they reflect the real world more 
accurately and realistically than Relational 
Databases. Multiversioning of object-oriented 
systems uses previous versions of the objects in 
order to enhance the performance of the 
transaction management. An optimistic 
algorithm to manage concurrent execution of the 
transactions in a centralized multiversion 
objectbase environment is presented by Hadaegh 
and Barker [3]. In that model each transaction 
obtains a copy (version) of all objects it needs to 
execute.  If it is decided that a transaction can be 
committed, the associated versions become 
persistent objects and the transaction commits. 
We propose a recovery algorithm for the 
Hadaegh and Barker model. 
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1. Introduction 

Two main aspects of the transaction 
management are concurrency control and 
recovery. Concurrency control ensures that 
individual users see consistent states of the 
database even though operations on behalf of 
many users may be interleaved by the database 
management system; i.e., to the external world, 
the database appears as if the transactions were 
executed one at a time in some order. Recovery 
ensures that the database is fault tolerant; i.e., the 
data are not corrupted even in failure.  A 
concurrency control algorithm guarantees 
serialization of a set of concurrently executing 
transactions based on some correctness criterion. 
A set of transactions is serializable if their 
execution history is equivalent to a serial 
execution of those transactions. The most 
common correctness criterion is conflict 
serializability [1]. This paper uses the concept of 
value-serializability created by Hadaegh and 
Barker [3]. 

Concurrency control is divided into two 
broad categories: optimistic and pessimistic. 
Pessimistic protocols block the transactions by 
deferring the executions of some conflicting 
operations. Optimistic algorithms do not block 
the transactions but validate their correctness at 
commit time. 

A reliable DBSM must be equipped with a 
recovery algorithm. The recovery algorithm must 
ensure that the database is brought into a 
consistent state after a failure occurs.  Failures 
can be divided into three categories: Transaction 
Failure, System Failure, and Media Failure. A 
transaction failure is detected by the application, 
e.g., encountering division by zero. A system 
failure (crash) occurs when the system fails in a 
way that causes the loss of volatile memory 
contents. An example of system failure is power 
failure. Media failure occurs from the breakdown 
of persistent storage and potentially causes the 
loss of data on non-volatile storage. If the failure 
occurs, the recovery algorithm is executed to 
bring back the system into a consistent state. 

 Recently research has moved toward object-
oriented databases with nested transactions. An 
objectbase consists of a set of objects that 
contain structure and behavior. The structure is 
the set of attributes encapsulated by the object. 
An object’s behavior is defined by a set of 
procedures called methods. A method’s 
operations can read or write an attribute, or 
invoke another method.  

In the nested transaction model [7], a 
transaction contains any number of 
subtransactions, and each subtransaction again 
may compromise any number of subtransactions. 
This paper adapts the nested transaction model 
used in Hadaegh and Barker’s model [3]. They 
introduce two types of transactions: user 
transactions and version transactions. A user 
transaction is a sequence of method invocations 
on a set of objects. A version transaction 
contains read/write operations on a version of an 
object and any nested method invocations. 

Hadaegh and Barker developed the 
concurrency control algorithm in their 



 

 

multiversion objectbase system. The goal of our 
research is to enhance their model with a 
recovery algorithm.  

This paper makes the following 
contributions: 
• It enhances the Hadaegh and Barker’s 

architecture. We add the Recovery Manager 
components to the architecture to recover 
the system in case a transaction or a system 
failure occurs. 

• We propose a recovery algorithm that 
reflects the expanded and enhanced 
architecture. The algorithm shows how the 
version objects are used to minimize the 
overhead during normal transaction 
processing and to minimize the time 
required to do the recovery. 

 
This paper is organized as follows: In 

Section 2, we describe the related work. In 
section 3, we briefly explain the version model, 
and the transaction model. Then we show the 
extended architecture that incorporates the 
Recovery Manager in Section 4. In Section 5, we 
introduce the recovery algorithm. Finally, we 
conclude this paper with some closing thoughts 
and address related open problems.  

 
2. Related Work 

In this section, we briefly review relevant 
multiversion, objectbase concurrency control, 
and recovery literature. Multiversioning allows 
for enhanced concurrency, simplifies 
recoverability, and supports temporal data 
management. Some of the related work that 
directly lead to our work are Graham and Barker 
[2], Hadaegh and Barker [3,4,5], and Wieler and 
Barker [8].  

Graham and Barker [2] proposed an 
optimistic concurrency control scheme for 
objectbase systems. In their algorithm, each 
transaction obtains copies of the objects it 
requires and is executed independently of other 
transactions.  

Hadaegh and Barker [3,4,5] illustrated an 
optimistic concurrency control for multiversion 
objectbase systems. They used closed nested 
transactions where updates of uncommitted 
transactions are never present in the objectbase at 
commit time. They presented a serializability 
theory called value-serializability and an 
architecture that could be used as the basics for 
the development of optimistic concurrency 
control protocols on a centralized objectbase 
environment. 

Wieler and Barker created a method and 
object scheduler algorithms that satisfy the 
operation ordering criteria of reliability 
definitions. To support the reliable schedulers, a 
novel logging scheme is introduced where each 
object maintains its own logical log. An object’s 
logical log contains log records for each action 
of the object transactions executing on the 
object. An object’s updates log records, grouped 
together in a logical log, promote efficient 
recovery from transaction aborts and system 
failures. 

Nakajima [6] introduces a recovery protocol 
with multiversion objects using branching 
multiversion objects instead of undo operations. 
Nakajima introduces an alternative structure for 
the versions of the objects called branched 
multiversion object. The execution of branched 
multiversion objects is structured in the trees of 
versions and may create several versions during 
one execution of methods. For recovery, 
specifically, for transaction aborts, compensating 
methods are proposed to undo the effects of their 
corresponding methods. The recovery algorithm 
search the version created by an aborted action, 
and select successor of this versions. If this 
version is the current version, discard the version 
and its successors, and the version before the 
current version becomes the current version. 
 
3. The Model 
 

This section defines objects, versions, and 
transactions. 
 
3.1 Object and Version Model 

In Hadaegh and Barker’s model [3], an 
objectbase consists of a set of objects. An object 
has a set of attributes that determine the state of 
the object and a set of methods that can change 
the behavior of the object. One or more versions 
(copies) of a particular object may exist at a 
particular time. 
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The versions of the objects are either 
committed or active. Figure 1 shows the 
structure of the committed versions and the 
active versions. Committed versions are 
maintained in a data link structure called the 
version-chain of the object. They are in 
chronological order depending on some 
correctness criteria.  The most recent committed 
version of the object is on the head of the chain 
and is called the last committed version (LCV).  
An active version of the object is made (copied) 
from the latest committed version of the object 
and is manipulated independently of all other 
versions. The active versions can be committed 
after the correctness specification for 
concurrency control is applied to determine if 
and where in the version-chain the active version 
can be inserted. 

An object is an ordered triple, o=<f,A,M>, 
where f is a unique object identifier; A is the 
object's structure, composed of attributes; and M 
is the object's behavior, composed of methods. 
An object with identifier f is denoted of. Objects 
are versionable in that several versions can be 
derived from a given object. Versions are either 
active or committed. An active version i of an 
object of (denoted vfi) begins as a copy of the 
object which can then be manipulated 
independently of all other such versions. The 
modified active version is promoted to a 
committed version if its state is consistent with 
other committed versions in object family f; 
otherwise, the active version is modified again, 
and if it still cannot be promoted to a committed 
object, it is disposed. A new committed version 
is inserted in an appropriate position in the 
version-chain, which is specified by the 
correctness criteria. Periodically, the older 
committed versions are removed from the 
version-chain and archived due to the limitation 
of the size of the version-chain. The version-
chain of an object effectively captures the 
evolution of the objects (historical information 
through time). 
 
3.2 Transaction Model 

The transactions are submitted to the 
objectbase by multiple, concurrent users. A 
transaction submitted by a user consists of a set 
of method invocations. Methods can invoke 
other methods. The nested methods invoked by 
the users are executed concurrently. The nested 
transactions submitted by the users may be 
divided into two groups. The first group includes 
top-level transactions explicitly created by the 
users. They are called user transactions. The 

second group contains transactions generated 
from the method invocations made by the top-
level transactions. They are called version 
transactions. 

The operations of a user transaction are 
method invocations that are transformed by the 
system into version transactions. Version 
transactions manipulate the active versions of the 
relevant object.  
 
4. The Architecture  

This section explains the architecture 
developed by Hadaegh and Barker [3]. It also 
illustrates our recovery management extension 
that brings reliability to the system.  

 
Figure 2 shows three original main 

components of the architecture: the Transaction 
Processor, the Version Processor, and the 
Validation Processor. The Transaction Processor 
contains two components: the User Transaction 
Manager and the Method Scheduler. The User 
Transaction Manager coordinates the execution 
of user transactions (UTi) by converting the 
method invocations of UTi to version 
transactions and passes them to the Method 
Scheduler. The Method Scheduler permits 
concurrent execution of a version transaction of 
UTi based on the information obtained from 
static analysis [2] so that version transactions of 
UTi invoked on the same active version are 
ordered, enforcing intra-UT concurrency control. 
Next, the Method Scheduler sends the version 
transactions and their schedule to the Version 
Processor. 

The Version Processor also consists of two 
components: the Version Transaction Manager 
and the Execution Manager. For each version 
transaction of the user transaction UTi executing 
on object f, the Version Transaction Manager 
obtains a copy of the last committed version of 
the object family f in the objectbase and puts it in 
the Unstable Store. This copy is the active 
version vfi. Next, it passes the versions 
transactions to the Execution Manager. The 
Version Transaction Manager builds a version 
list for all versions of objects associated with 
UTi; this list is denoted by VRLST1 (UTi). It also 
builds a version list for the last committed 
version of the objects associated with UTi; 
denoted by VRLST2(UTi). When all version 
transactions of UTi are completed, the Version 
Transaction Manager sends VRLST1(UTi) to the 
Execution Manager. The Execution Manager 
executes the operations of the version  



 

 

  

 
 
 

transactions against the active versions in the 
Unstable Store. When the Execution Manager 
obtains VRLST1(UTi) from the Version 
Transaction Manager, it passes VRLST1(UTi) to 
the Validation Processor.  
The two main components of the Validation 
Processor are the Decision Manager and the 
Commit Manager. For each f in the 
VRLST1(UTi), the Decision Manager compares 
the updated active version vfi with the last 
committed version of object family f (ofn), and 
determines if an updated active version would 
create inconsistency in the objectbase. The state 
of an updated active version vfi is consistent with 
the states of committed versions in the object 
family f if the values of the attributes read by UTi 
in vfi have not been modified in the objectbase 
during the lifetime of UTi. If the states of all 
active versions are consistent with the states of 
their corresponding committed versions in the 
objectbase, VRLST1 (UTi) is sent to the Commit 
Manager; otherwise, some active versions are 
invalid and UTi should be aborted or reconciled. 
 

If it is decided that UTi is to be committed, 
the Commit Manager promotes the revised 
versions to committed versions and merges the 
committed versions with their corresponding 
objects in the objectbase, thereby creating new 
states for the objects in objectbase. Next, the 
Commit Manager sends a commit message to the 
Decision Manager. The commit message is 
eventually passed to the user by the User 
Transaction Manager. 

As shown in the architecture, we have added 
a new component called the Recovery Processor  
to take care of the recovery issues in case the 
system fails. The two components of the 
Recovery Processor are the Status Manager and 
the Garbage Collector. During the execution of 
UTi, the other three processors, explained above, 
report the status of the transaction to the Status 
Manager. Every time the Status Manager 
receives a new status for UTi, it records it in the 
log. The Status Manager keeps separate records 
for each transaction in the log. Each record of the 
log contains four fields. 

 
 UTi   VRLST1(UTi)  VRLST2(UTi)  Status of UTi 

Figure 2



 

 

 
The first field is reserved for identification of the 
transaction. The second field is used to store the 
identification of the active versions that are being 
processed by the transaction. The third field is 
used to record the identification of the base 
(original) versions of the active versions 
processed by the transaction. Finally the last 
field refers to the current status of the 
transaction.  

The Garbage Collector cleans up the log and 
the Unstable Store by removing any information 
recorded for committed or aborted transactions. 
The next section explains the Recovery 
Processor in detail. 
 
5. The Recovery Management 
5.1 Main Operation 

The Status Manager contains five major 
methods: Begin(UTi), ReadyToValidate(UTi), 
ReadyToCommit(UTi), Abort(UTi), and 
Commit(UTi). 
 
Begin(UTi): This marks the beginning of the user 
transaction UTi. The User Transaction Manager 
invokes this method. When the Status Manager 
obtains the Begin message, it creates a record in 
the log for UTi with Begin status. 
 
 
 
ReadyToValidate(UTi): This marks the pre-
commit of all version transactions of the user 
transaction UTi. The Version Transaction 
Manager invokes this method after all version 
transactions of user transaction UTi are pre-
committed. In this method, the Version 
Transaction Manager passes the VRLST1 (UTi), 
and the VRLST2 (UTi) to the Status Manager. 
When the Status Manager receives the 
ReadyToValidate message, it adds the two 
version lists to the UTi record in the log and 
changes the status of UTi to ReadyToValidate. 
 
 
 
ReadyToCommit(UTi): This denotes that the user 
transaction UTi has successfully passed the 
validation status and is ready to commit. The 
Decision Manager invokes this method after it 
determines that the updated active versions will 
not create inconsistency in the objectbase if they 
become persistent objects. When the Status 
Manager receives the ReadyToCommit message, 

it changes the status of the transaction to 
ReadyToCommit in the log record for UTi. 
 
 
  
Abort(UTi): This denotes the unsuccessful 
completion of the user transaction UTi. UTi 
aborts if either it terminates abnormally during 
the execution (transaction failure) or it fails to 
pass the Validation test done by the Decision 
Manager. In the former case, the Execution 
Manager sends the Abort message to the Status 
Manager. In the latter case, the Decision 
Manager notifies the Status Manager about the 
abortion of UTi. When the Status Manager 
receives an Abort message, it changes the status 
of the transaction to Abort in the log for UTi. 
 
 
 
Commit(UTi): This marks the successful 
completion of the user transaction UTi. The 
Commit Manager calls this method after all 
active versions have been successfully promoted 
to the top of the version-chain of the objects that 
have been used by UTi. The Commit Manager 
sends a Commit message to the Status Manager. 
When the Status Manager receives the Commit 
message, it changes the status of the transaction 
to Commit in the log record of UTi. 
 
 
 
During normal transaction processing, the Status 
Manager only records in the log the status of the 
transaction and the version list. All operations 
make by the transactions are done against the 
active versions. So the versions of the objects 
minimize the overhead of the log during normal 
transaction processing. 
 
5.2 Recovery Algorithm 

If a system crash occurs, the recovery is 
done as follows: The Status Manager performs 
an analysis on the log, line by line to find out the 
status of the transactions. If the status of the 
transaction is Begin, it changes the status to 
Abort, because the transaction was not completed 
before the crash occurred. If the status of the 
transaction is ReadyToValidate, it restores the 
VRLST1 (UTi) and VRLST2 (UTi) from the 
transaction record and sends these lists to the 
Decision Manager. If the status of the transaction 
is ReadyToCommit, it restores the VRLST1 (UTi) 
from the transaction record and sends this list to 

UTi   VRLST1(UTi)  VRLST2(UTi)  ReadyToCommit 

UTi   VRLST1(UTi)  VRLST2(UTi)  ReadyToValidate 

UTi ? ? Begin 

UTi   VRLST1(UTi)  VRLST2(UTi)  Abort 

UTi   VRLST1(UTi)  VRLST2(UTi)  Commit 



 

 

the Commit Manager. Any record with Commit 
or Abort status remains unchanged. 

 The recovery algorithm minimizes the time 
required to do the recovery because of the 
lacking of undoing or redoing processing and the 
presence of the active version in Unstable Store. 

This algorithm differs from traditional 
multi-version recovery algorithm in that the 
recovery is accomplished base on the current 
status of the transaction recorded in the log. 
 
5.3 System Clean-up  

Periodically, the Status Manager invokes the 
Garbage Collector to clean up the log. The 
Garbage Collector sequentially goes through the 
log and removes the records that refer to aborted 
or committed transactions. In addition, for every 
record of a transaction such as UTi that is 
removed from the log, the Garbage Collector 
removes all the active versions associated with 
UTi from the Unstable Store. The Status 
Manager invokes the Garbage Collector during 
the idle periods, because clean-up of the 
Unstable Store and the log can be a particularly 
time-consuming task that slows down the 
system. 

The recovery algorithm is idempotent. If the 
system crashes again during restart, the recovery 
algorithm performs exactly the same steps as it 
did during the previous restart. Further, our 
Recovery Processor enables fast crash recovery 
while incurring low overhead during normal 
transaction processing. In the recovery 
algorithm, the recovery time is very fast since the 
active versions and the version-chain are 
available in the Unstable Store and objectbase 
respectively. This method avoids writing undo 
and redo log records. This significantly reduces 
the storage overhead for the log compared with 
other log-based schemes normally used in 
traditional databases.  
 
6. Conclusions and Future Work 

This paper presented the recovery algorithm 
based on the assumption that the transaction 
aborts in case of conflict. One area for immediate 

future works is implementing recovery using 
simple and complex reconciliation to re-execute 
the transaction instead of abort it. We can also 
extend this work to investigate concurrency 
control and recovery using both pessimistic and 
optimistic techniques in distributed objectbase 
systems.  
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